Home
Class 9
MATHS
Solve x^(2)+x(r-q)-(p-r)(p-q)=0...

Solve `x^(2)+x(r-q)-(p-r)(p-q)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation (q-r)x^(2)+(r-p)x+(p-q)=0

The roots of the equation (q- r) x^(2) + (r - p) x + (p - q)= 0 are

The roots of the eqaution (q-r)x^(2)+(r-p)x+(p-q)=0 are

x^(p-q).x^(q-r).x^(r-p)

The roots of the equation " "(q-r)x^(2)+(r-p)x+(p-q)=0 are :a) (r-p)(q-r), 1 b) (p-q)/(q-r), 1 c) (p-r)/(q-r), 2 d) (q-r)/(p-q), 2

The lines 1) (p-q)x+(q-r)y+(r-p)=0,2)(q-r)x+(r-p)y+(p-q)=0,3)(r-p)x+(p-q)y+(q-r)=0

The roots of the equation (q-r)x^2+(r-p)x+p-q=0 are (A) (r-p)/(q-r),1 (B) (p-q)/(q-r),1 (C) (q-r)/(p-q),1 (D) (r-p)/(p-q),1