Home
Class 12
MATHS
If [(2veca+vecb)veccvecd]=lambda[vecavec...

If `[(2veca+vecb)veccvecd]=lambda[vecaveccvecd]+mu[vecbveccvecd]` then `lambda+mu` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vecd)] , then lamda+mu=

If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vecd)] , then lamda+mu=

If [vecaxxvecb vecbxxvecc veccxxveca]=lambda[veca vecb vecc]^2 , then lambda is equal to :

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc^(2)] , then lambda is equal to

Let vecn be a unit vector perpendicular to the plane containing the point whose position vectors are veca, vecb and vecc and, if abs([(vecr -veca)(vecb-veca)vecn])=lambda abs(vecrxx(vecb-veca)-vecaxxvecb) then lambda is equal to

Let vecn be a unit vector perpendicular to the plane containing the point whose position vectors are veca, vecb and vecc and, if abs([(vecr -veca)(vecb-veca)vecn])=lambda abs(vecrxx(vecb-veca)-vecaxxvecb) then lambda is equal to

Prove that [lambda veca +mu vecb" "vecc" "vecd]=lambda [veca" "vecc" "vecd]+mu[vecb" "vecc" "vecd] .

If vecd = gamma(veca xx vecb) + mu(vecb xx vecc) + v(vecc xx veca) and [veca vecb vecc]=1/8 , then lambda = mu + v is equal to: