Home
Class 12
MATHS
Let veca=2hati+hatj-2hatk, vecb=hati+hat...

Let `veca=2hati+hatj-2hatk`, `vecb=hati+hatj`. If `vecc` is a vector such that `veca.vecc=|vecc|` and angle between vectors `vecaxxvecb and vecc` is `30^@` , then `|(vecaxxvecb)xxvecc|`is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca=2hati+hatj-2hatk and vecb=hati+hatj . If vecc is a vector such that veca.vec=|vecc|,|vecc-veca|=2sqrt(2) and the angle between vecaxxvecb and vecc is 30^(@) , then |(vecaxxvecb)xxvecc|= .

Let veca=2hati+hatj-2hatk and vecb=hati+hatj . If vecc is a vector such that veca.vecc=|vecc|,|vecc-veca|=2sqrt(2) and the angle between vecaxxvecb and vecc is 30^(@) . Then |(vecaxxvecb)xxvecc) is equal to

Let veca=2hati+hatj-2hatk and vecb=hati+hatj. If vecc is a vector such that veca.vecc=|vecc|,|vecc-veca|=2sqrt(2) and the angle between (vecaxxvecb) and vecc is pi/6 then |(vecaxxvecb)xvec|= (A) 2/3 (B) 1/2 (C) 3/2 (D) 1

Let veca = 2 hati+hatj-2hatk, vecb=hati+hatj . If vecc is a vector such that veca*vecc=vecc-veca=2sqrt(2) and the angle between |(veca xx vecb) xx vecc| equals:

Let veca = 2hati + hatj - 2hatk, and vecb = hati+ hatj if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vecc is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

Let veca = 2hati + hatj-2hatk, and vecb = hati+ hatj if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

Let veca=2hati+hatj-2hatk and vecb=hati+hatj . Let vecc be a vector such that |vecc-veca|=3,|(vecaxxvecb)xxvecc| = 3 and the angle between vecc and veca xx vecb is 30^@ Find veca.vecc