Home
Class 12
MATHS
Let O be the origin and let PQR be an ar...

Let O be the origin and let PQR be an arbitrary triangle. The point S is such that `bar(OP)*bar(OQ)+bar(OR)*bar(OS)=bar(OR)*bar(OP)+bar(OQ)*bar(OS)=bar(OQ)*bar(OR)+bar(OP)*bar(OS)` Then the triangle PQR has S as its

A

centriod

B

circumectre

C

incente

D

orthocenter

Text Solution

Verified by Experts

`vec(OP) . vec(OQ) + vec(OR).vec(OS)= vec(OR) -vec(OP)+vec(OQ).vec(OS).`
`=vec(OP).(vec(OQ)-vec(OR))=vec(OS).(vec(OQ)-vec(OR))`
`implies (vec(OP)-vec(OS)).(vec(RQ))=0implies vec(SP).vec(RQ)=0`
`implies vec(SP)botvec(RQ)`
Similarly ,`vec(SR)bot vec(OP) and vec(SQ) botvec(PR).`
hence , S is orthocenter.
Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(OP)=2bar(i)+3bar(j)-bar(k), bar(OQ)=3bar(i)-4bar(j)+2bar(k) then d.c's of bar(PQ) are

The point of intersection of the lines bar(r)=bar(a)+t(bar(b)+bar(c)), bar(r)=bar(b)+s(bar(c)+bar(a)) is

If bar(a) = bar(i) + 2bar(j) + 3bar(k), bar(b) = 3bar(i) +5bar(j) -bar(k) are 2 sides of a triangle, find its area.

DeltaABC be an equilateral triangle whose orthocentre is the origin 'O'. If bar(OA)=bar(a), bar(OB)=bar(b)" then "bar(OC) is

ABC is an equilateral triangle of side ‘a'. Then bar(AB).bar(BC) +bar(BC).bar(CA)+ bar(CA).bar(AB) =

Let G be the centroid of a triangle ABC and O be any other point, then bar(OA)+bar(OB)+bar(OC) is equal to

Let G be the centroid of a triangle ABC and O be any other point, then bar(OA)+bar(OB)+bar(OC) is equal to

If bar(a) = bar(i) + 2bar(j)-3bar(k), bar(b) = 3bar(i)-bar(j)+2bar(k) then S.T bar(a)+bar(b), bar(a)-bar(b) are perpendicular.

bar(a)=2bar(i)-3bar(j)+2bar(k) and bar(b)=2bar(i)+3bar(j)+bar(k) are the sides of triangle OAB. Then its area is …… seq. unit.