Home
Class 10
MATHS
(1)/(x-3)+(1)/(x+5)=(1)/(3)...

(1)/(x-3)+(1)/(x+5)=(1)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve each of the following quadratic equations: (i) (1)/(x-1)-(1)/(x+5)=(6)/(7),xne1,-5 (ii) (1)/(2x-3)+(1)/(x-5)=1(1)/(9),xne(3)/(2),5

(1)/((x-3))-(1)/((x+5))=(1)/(6),(x!=3,-5)

Solve for x (1)/( 2x -3) + (1)/(x -5) =1," " x ne 3/2,5

underset(x to 1)lim (1)/(x-1){(1)/(x+3)-(2)/(3x+5)}=

lim_(x rarr1)(1)/(x-1){(1)/(x+3)-(2)/(3x+5)}

(1)/(2x-1)+(1)/(3).(1)/((2x-1)^(3))+(1)/(5)(1)/((2x-1)^(5))+....=

(x+2)/(3)-(x+1)/(5)=(x-4)/(3)-1

lim_(x rarr1)(1)/((x-1))((1)/(x+3)-(2)/(3x+5))

Solve for : :(3)/(x+1)-(1)/(2)=(2)/(3x-1),x!=(3)/(5),-(1)/(7)

Assertion (A) : (1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/(7.5^(7))+…(1)/(2)log((3)/(2)) Reason (R ) : If |x| lt 1 then log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)