Home
Class 11
MATHS
" (ii) "(b-c)^(2)+(c-a)^(2)+(b-d)^(2)=(a...

" (ii) "(b-c)^(2)+(c-a)^(2)+(b-d)^(2)=(a-d)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c, d are in continued proportion, then prove that (b -c)^(2) + (c -a)^(2) + (b-d)^(2) = (a -d)^(2)

If a, b, c and d are in G.P., show that, (b-c)^(2) + (c-a)^(2)+ (d-b)^(2) = (a-d)^(2) .

If a,b,c,d are in geometric sequence then prove that (b-c)^(2) +(c-a)^(2) -(d-b)^(2)=(a-d)^2

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

If a, b, c, d are in GP, prove that (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2) .

If a, b, c ,d be in G.P. , show that (i) (b -c)^(2) + (c - a)^(2) +(d -b)^(2) = (a - d)^(2) (ii) a^(2) + b^(2) + c^(2) , ab + bc + cd , b^(2) + c^(2) + d^(2) are in G.P.

a,b,c,d are four different real numbers which are in APIf 2(a-b)+x(b-c)^(2)+(c-a)^(3)=2(a-d)+(b-d)^(2)+(c-d)^(3), then

If a,b,c,d are in continued proportion then show that (b-c)^2+(c-a)^2+(b-d)^2= (a-d)^2 .

If a,b,c,d are in G.P., then prove that: (b-c)^2 + (c-a)^2+(d-b)^2=(a-d)^2