Home
Class 9
MATHS
((a)/(3)-(b)/(2)+2)^(2)...

`((a)/(3)-(b)/(2)+2)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

What will be factors of (a^(2)-b^(2))^(3) + (b^(2) -c^(2))^(3) + (c^(2) - a^(2))^(3)

Factorize : (a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3)

Simplify: 4ab(a-b)-6a^(2)(b-b^(2))-3b^(2)(2a^(2)-a)+2ab(b-a)

Prove that ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))=(a+b)(b+c)(c+a)

In a parallelogram ABCD, |bar(AB)|=a,|bar(AD)|=b and |bar(AC)|=c, then bar(DB).bar(AB) has the value: (A) (3a^(2)+b^(2)-c^(2))/(2) (B) (a^(2)+3b^(2)-c^(2))/(2) (c) (a^(2)-b^(2)+3c^(2))/(2) (D) (a^(2)+3b^(2)+c^(2))/(2)

Simplify ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))

Simplify: ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))

Simplify: ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))

Simplify ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))