Home
Class 12
MATHS
" 4."(i)f(x)=x^(3)-2x^(2)-x+3" in "[0,1]...

" 4."(i)f(x)=x^(3)-2x^(2)-x+3" in "[0,1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the critical points of the function f(x) =4x^(3)-6x^(2) -24x+9 " if f(i) x in [0,3] (ii) x in [-3,3] (iii) x in [-1,2]

Find the critical points of the function f(x) =4x^(3)-6x^(2) -24x+9 " if f(i) x in [0,3] (ii) x in [-3,3] (iii) x in [-1,2]

Find the critical points of the function f(x) =4x^(3)-6x^(2) -24x+9 " if f(i) x in [0,3] (ii) x in [-3,3] (iii) x in [-1,2]

If f(x)=3x^(3)-2x^(2)+x-2 , and i =sqrt(-1) then f(i) =

If A=[{:(0,1,2),(2,-3,0),(1,-1,0):}]andf(x)=x^(3)+4x^(2)-x , then find f(A).

The range of the functions f : [0,1] to R , given by f(x) = x^(3) - x^(2) + 4x + 2 sin^(-1)x , is

Using Lagrange's theorem , find the value of c for the following functions : (i) x^(3) - 3x^(2) + 2x in the interval [0,1/2]. (ii) f(x) = 2x^(2) - 10x + 1 in the interval [2,7]. (iii) f(x) = (x-4) (x-6) in the interval [4,10]. (iv) f(x) = sqrt(x-1) in the interval [1,3]. (v) f(x) = 2x^(2) + 3x + 4 in the interval [1,2].

Given that f'(x)=4x^(3)-3x^(2)+2x-1 find f(x) if f(0)=0 .

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to a.(1)/(4) b.0 c.(1)/(3) d.4

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to- (1)/(4)(b)0 (c) (1)/(3)(d)4