Home
Class 10
MATHS
Prove: sin^2Acos^2B-cos^2Asin^2B=sin^2A-...

Prove: `sin^2Acos^2B-cos^2Asin^2B=sin^2A-sin^2B`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin^Acos^B-cos^2Asin^2B)=(sin^2A-sin^2B)

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

sin^(2)A cos^(2)B-cos^(2)A sin^(2)B=sin^(2)A-sin^(2)B

cos(A+B)*cos(A-B)= (a) sin^2A-cos^2B (b) cos^2A-sin^2B (c) sin^2A-sin^2B (d) cos^2A-cos^2B

Prove the following. sin^2Acos^2B+Cos^2Asin^2B+cos^2Acos^2B+sin^2Asin^2B=1

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1

Prove the following identities: tan^2A-tan^2B=(cos^2B-cos^2A)/(cos^2Bcos^2A)=(sin^2A-sin^2B)/(cos^2Acos^2B) (sinA-sinB)/(cosA+cosB)+(cosA-cosB)/(sinA+sinB)=0

Prove that (sin^2A)/(cos^2A)+(cos^2A)/(sin^2A)=1/(sin^2Acos^2A)-2 .

Prove the following identity : sin^2 A cos^2 B + cos^2 A sin^2 B + cos^2 A cos^2 B+ sin^2 A sin^2 B = 1 .