Home
Class 12
MATHS
tan^(-1)x+cot^(-1)x=...

tan^(-1)x+cot^(-1)x=

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

The number of real solution of equation tan^(-1)x+cot^(-1)(-|x|)=2tan^(-1)(6x) is

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

The set of values of x satisfying |tan^(-1)x|>=|cot^(-1)x| is

Find the solution of the equation: tan^-1x - cot^-1 x = tan^-1(1/sqrt3)

2tan(tan^(-1)(x)+tan^(-1)(x^(3))), where x in R-{-1,1} is equal to (2x)/(1-x^(2))t(2tan^(-1)x)tan(cot^(-1)(-x)-cot^(-1)(x))tan(2cot^(-1)x)

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to (2x)/(1-x^2) t(2tan^(-1)x) tan(cot^(-1)(-x)-cot^(-1)(x)) "tan"(2cot^(-1)x)

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to (2x)/(1-x^2) t(2tan^(-1)x) tan(cot^(-1)(-x)-cot^(-1)(x)) "tan"(2cot^(-1)x)