Home
Class 12
MATHS
" Number of roots of the equation "|sin ...

" Number of roots of the equation "|sin x*cos x|+sqrt(2+tan^(2)x+cot^(2)x)=sqrt(3)" ,in set "[0,4 pi]," is/are "

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of roots of the equation |sin x cos x|+sqrt(2+tan^(2)x+cot^(2)x)=sqrt(3),x in[0,4 pi] are

Number of roots of the equation |sinxcosx| +sqrt(2+t a n^2x+cot^2x)=sqrt(3),x in [0,4pi]a r e

Number of roots of the equation |sinxcosx| +sqrt(2+t a n^2x+cot^2x)=sqrt(3),x in [0,4pi]a r e

Number of roots of the equation |sinxcosx| +sqrt(2+t a n^2x+cot^2x)=sqrt(3),x in [0,4pi]a r e

The number of roots of the equation |sin x cos x| + sqrt(2 + tan^(2) x + cot ^(2) x) = sqrt(3), " where " x in [0, 4 pi] is

Number of real value of x satisfying the equation |sin x cos x|+sqrt(2+tan^(2)x+cot^(2)x)=sqrt(3)in[0,2 pi]

The variable x satisfying the equation |sin x cos x|+sqrt(2+tan^(2)+cot^(2)x)=sqrt(3) belongs to the interval [0,(pi)/(3)](b)((pi)/(3),(pi)/(3))(c)[(3 pi)/(4),pi] (d) none-existent

The number of solutions of the equation sin((pi x)/(2sqrt(3)))=x^(2)-2sqrt(3)x+4