Home
Class 11
MATHS
(sec A sec B+tan A tan B)^(2)-(sec A tan...

(sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

(sec x sec y + tan x tan y) ^ (2) - (sec x tan y + tan x sec y) ^ (2) = 1 Prove it

sec^(2)A tan^(2) B-tan^(2)A sec^(2) B=

1/(sec A + tan A) = sec A - tan A

If f(x)=sec^(2)x then (1+tan A*tan B)^(2)+(tan A-tan B)^(2)=

If (sec A+tan A)(sec B+tan B)(sec C+tan C)=(sec A-tan A)(sec B-tan B)(sec C-tan C) prove that the value of each side is +-1

(sec A+tan A)(sec B+tan B)(sec C+tan C)=(sec A-tan A)(sec B-tan B)(sec C-tan C Prove that each of the side is equal to +-1

If (sec A+tan A)(sec B+tan B)(sec C+tan C)=(sec A-tan A)(sec B-tan B)(sec C-tan C then each side is equal to

Prove the following identities: (1+tan A tan B)^(2)+(tan A-tan B)^(2)=sec^(2)A sec^(2)B(tan A+csc B)^(2)-(cot B-sec A)^(2)=2tan A cot B(csc A+sec B)

(1)/(sec A-tan A)=sec A+tan A

(1)/(sec A-tan A)=sec A+tan A