Home
Class 12
MATHS
" (ii) "un^(-1)x+tan^(-1)(2x)/(1-x^(2))=...

" (ii) "un^(-1)x+tan^(-1)(2x)/(1-x^(2))=(pi)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

2 tan ^(-1) ""(2x)/(1-x^(2))=(pi)/(3)

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Solve for x, cos^(-1)((x^(2)-1)/(x^(2)+1))+tan^(-1)((-2x)/(1-x^(2)))=(2pi)/(3)

tan^(-1)x+tan^(-1)(2x)/(1-x^(2))=pi+tan^(-1)(3x-x^(3))/(1-3x^(2)),(x>0)

3 sin ^(-1)((2 x)/(1+x^(2)))-4 cos ^(-1)((1-x^(2))/(1+x^(2))) +2 tan ^(-1)((2 x)/(1-x^(2)))=(pi)/(3) ( then ) x=

IF 3 sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+ 2tan^(-1)((2x)/(1-x^(2)))=(pi)/3 then x=

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

tan^(- 1)x+tan^(- 1)\ (2x)/(1-x^2)=pi+tan^(- 1)\ (3x-x^3)/(1-3x^2),(x >0) is true if

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)