Home
Class 13
MATHS
[lim(x rarr1)(cos2-cos2x)/(x^(2)-|x|)" i...

[lim_(x rarr1)(cos2-cos2x)/(x^(2)-|x|)" is equal to "],[[" (A) "0," (B) "cos2," (C) "2sin2]]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr-1)(cos2-cos2x)/(x^(2)-|x|)=

Lim_(x rarr -1) (cos 2 - cos 2x)/(x^2-|x|)

lim_(x rarr0)(1-cos mx)/(x^(2))

lim_(x rarr0)(1-cos x)/(x^(2))

lim_(x rarr0)x^(2)cos(2/x)

lim_(x rarr0)(1-cos x^(@))/(x^(2))

lim_(x rarr0)(1-cos2x)/(3tan^(2)x)

lim_(x rarr0)(sin^(2)x(1-cos2x))/(x^(2))

lim_(x rarr0)(e^(x^(2))-cos x)/(sin^(2)x) is equal to