Home
Class 12
MATHS
int(a)^(b-a)f''(x+a)dx equals (a) f(b-...

`int_(a)^(b-a)f''(x+a)dx` equals
(a) f(b-a)-f(a)`" "` (b) f(b)-f(2a)
(c) f'(b)-f'(2a) `" "`(d) f'(b-a)-f'(2a)

Promotional Banner

Similar Questions

Explore conceptually related problems

x-ax)=a...f(a)+f(b)=f(a+b)

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

If f(x) is monotonic differentiable function on [a,b], then int_(a)^(b)f(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx=(a)bf(a)-af(b)(b) bf (b)-af(a)(c)f(a)+f(b)(d) cannot be found

If f(a+b-x)=f(x) , then int_a^b x f(x)dx is equal to (A) (a-b)/2int_a^b f(a+b-x)dx (B) (a+b)/2int_a^b f(b-x)dx (C) (a+b)/2int_a^b f(x)dx (D) (b-a)/2int_a^b f(x)dx

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has