Home
Class 12
MATHS
If A is a 3times3 matrix that satisfi...

If A is a `3times3` matrix that satisfies `A^(2)=A` ,and if `(1+A)^(5)=x+yA` ,then `x !=y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a 3times3 non-singular matrix and (adjA)= |A|^(x) ,|adj(adjA)|= |A|^(y) , |A^(-1)|=|A|^(z) ,then the value of x,y,z in descending order.

The real numbers x, y satisfy x^(3)-3x^(2)+5x-17=0 and y^(3)-3y^(2)+5y+11=0 , then x+y is

If A is a 3times3 non singular matrix and |adjA| = |A|^(x) ; |adj(adjA)| = |A|^(y) ; |A^(-1)|=|A|^(z) then the values of x,y,z in descending order."

"If A is a "3times3" non-singular matrix and "|adjA|=|A|^(x),|adj(adjA)|=|A|^(y), |A^(-1)|=|A|^(z)" ,then the value of x,y,z in descending order."

The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

Let real numbers x and y satisfy the equations x^(3)-3x^(2)+5x=1 and y^(3)-3y^(2)+5y=5 respectively then the value of x+y is equal to

Use matrix method to solve the equations 5x-7y=2 and 7x-5y=3

For the matrix A=[3175], find x and y so that A^(2)+xI=yA

If A = [[3,2],[4,3]] and B = [[-1,7],[3,5]] then the sum of the abosolute values of the entries of the matrices X and Y satisfying AX = B and YA = B is...

If real numbers x and y satisfy (x+5)^(2)+(y-12)^(2)=196 , then the maximum value of (x^(2)+y^(2))^((1)/(3)) is