Home
Class 12
MATHS
If " "x=t^(2),y=t^(3)," then "(dy)/(dx)...

If` " "x=t^(2),y=t^(3)`," then `"(dy)/(dx)"` at `"t=-1"` is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(3) and y=t^(4) then (dy)/(dx) at "t=-1" is

If x=t^(2),y=t^(3) find (dy)/(dx)

If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=

If y=t^(2)-t+1," then: "(dy)/(dx)=

If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

If x=a(t+t^(-1)),y=a(t-t^(-1))," then "(dy)/(dx)=

If x=2t-3t^(2) and y=6t^(3) then (dy)/(dx) at point (-1,6) is

If x=cos^(-1)t,y=log(1-t^(2))," then "((dy)/(dx))" at "t=(1)/(2) is

If x=t log t ,y =t^(t) ,then (dy)/(dx)=