Home
Class 12
MATHS
If p!=0 and (p-(1)/(p))^(2)=a then p^(3)...

If `p!=0` and `(p-(1)/(p))^(2)=a` then `p^(3)-(1)/(p^(3))`=?

Promotional Banner

Similar Questions

Explore conceptually related problems

P^(2)+(1)/(p^(2))=7 then find the value of P^(3)+(1)/(P^(3))=?

p_(1)p_(2)p_(3)=

If one root is square of the other root of the equation x^(2)+px+q=0, then the relation between p and q is p^(3)-q(3p-1)+q^(2)=0p^(3)-q(3p+1)+q^(2)=0p^(3)+q(3p-1)+q^(2)=0p^(3)+q(3p+1)+q^(2)=0

If a+(1)/(a)=p , show that a^(3)+(1)/(a^(3))=p(p^(2)-3) .

If x+(1)/(x)=p, the value of x^(3)+(1)/(x^(3)) is p^(3)+(1)/(p^(3))(b)p^(3)-3p(c)p^(3)(d)p^(3)+3p

If p_(1),p_(2),p_(3) are altitude of a triangle ABC from the vertices A,B,C and Delta the area of the triangle, then (1)/(p_(1)^(2))+(1)/(p_(2)^(2))+(1)/(p_(3)^(2))=

If p + 1/(p+2)=1 , then the value of (p+2)^3 + 1/((p+2)^3)-3 is :