Home
Class 12
MATHS
The maximum value of x^(1/x),x >0 is...

The maximum value of `x^(1/x),x >0` is (a)`e^(1/e)` (b) `(1/e)^e` (c) `1` (d) none of these

Text Solution

Verified by Experts

Let `y=x^{frac{1}{x}}`

Therefore,

`log y=log _{e} x`

Differentiating w.r.t `x`,

So,

...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    RD SHARMA|Exercise Solved Examples And Exercises|52 Videos
  • MEAN AND VARIANCE OF A RANDOM VARIABLE

    RD SHARMA|Exercise Solved Examples And Exercises|113 Videos

Similar Questions

Explore conceptually related problems

Show that the maximum value of ((1)/(x))^(x) is e^(1/e)

Show that the maximum value of ((1)/(x))^(x) is e^((1)/(e))

The maximum value of (log x)/(x) is (a) 1 (b) (2)/(e)(c) e (d) (1)/(e)

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is e(b)(1)/(e)(c)1(d)0

If f'(x)=f(x)+int_(0)^(1)f(x)dx, given f(0)=1 then the value of f((log)_(2)2) is (a) (1)/(3+e)(b)(5-e)/(3-e)(c)(2+e)/(e-2) (d) none of these

The minimum value of x(log)_(e)x is equal to e (b) 1/e(c)-1/e (d) 2e( e )e

The minimum value of (x)/((log)_(e)x) is e(b)1/e(c)1(d) none of these

If f(x)= e^(coscos^-1x^2+tancot^-1 x^2), then minimum value of f(x) is (A) e (B) e^2 (C) e^(2/3 (D) none of these

(xe^x)/(1+x)^2dx= (A) e^x/(1+x) (B) e^x/(1+x)^2 (C) e^xlog(1+x) (D) none of these

The value of (1-x^4)/(1+x)+(1+x^2)/xxx1/(x(1-x)) is (a) 1 (b) 1-x^2 (c) 1/x (d) 1+x (e) None of these