Home
Class 12
MATHS
" If "y=tan^(-1)x," then "(d^(2)y)/(dx^(...

" If "y=tan^(-1)x," then "(d^(2)y)/(dx^(2))" in the terms of y is? "

Promotional Banner

Similar Questions

Explore conceptually related problems

if y=tan^(-1)x, find (d^(2)y)/(dx^(2))

If y=tan^(-1)x, find (d^(2)y)/(dx^(2)) in terms of y alone.

If y= tan^(-1)x , then find (d^(2)y)/(dx^(2)) in terms of y alone.

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y=tan^(-1)x find (d^(2)y)/(dx^(2)) in terms of y alone.

y= "tan"^(-1)x then find (d^2y)/(dx^(2)) .

"If "y=cos^(-1)x, "find "(d^(2)y)/(dx^(2)) in terms of y alone.

If y=sec x -tan x ,then (d^(2)y)/(dx^(2)) =

Let the equation of a curve is given in implicit form as y=tan(x+y). Then (d^(2)y)/(dx^(2)) in terms of y is