Home
Class 12
MATHS
int(1+x^(2))/(x^(2))*e^(x-(1)/(x)dx)...

int(1+x^(2))/(x^(2))*e^(x-(1)/(x)dx)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(2)((x^(2)-1)/(x^(2)))e^(x+(1)/(x))dx=e^((5)/(2))-e^(2)

STATEMENT-1 : int(x^(2)-1)/(x^(2))e^(((x^(2)+1)/(x)))dx=e^((x^(2)+1)/x)+C and STATEMENT-2 : intf'(x)e^(f(x))dx=e^(f(x))+c

STATEMENT-1 : int(x^(2)-1)/(x^(2))e^(((x^(2)+1)/(x)))dx=e^((x^(2)+1)/x)+C and STATEMENT-2 : intf'(x)e^(f(x))dx=e^(f(x))+c

Observer the following statements : A : int (x^(2)-1)/(x^(2)) e^((x^(2)+1)/(x))dx=e^((x^(2)+1)/(x))+c R: int f'(x)e^(f(x))dx=f(x)+c Then which of the following is true ?

int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)-(1)/(x))+c (b) x e^(x^(2)-(1)/(x))+c (c) (2x-1) e^(x^(2)-(1)/(x))+c (d) (2x+1) e^(x^(2)-(1)/(x))+c

int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)-(1)/(x))+c (b) x e^(x^(2)-(1)/(x))+c (c) (2x-1) e^(x^(2)-(1)/(x))+c (d) (2x+1) e^(x^(2)-(1)/(x))+c

int (1)/(x^(2)) e^((x - 1)/(x)) dx =

int(1+2x^(2)+(1)/(x))e^(x^(2)+(1)/(x))dx is equal to

int(1+x+x^(2))/(1+x^(2))e^(tan^(-1)x)dx=