Home
Class 14
MATHS
(1)/(log(a/b)x)+(1)/(log(b/c)x)+(1)/(log...

(1)/(log_(a/b)x)+(1)/(log_(b/c)x)+(1)/(log_(c/a)x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x) , prove that : c^(2) = ab .

If (1)/(log_(a) x) + (1)/(log_(c) x) = (2)/(log_(b)x ) then a, b, c, are in

(1)/(log_(a)(b))xx(1)/(log_(b)(c))xx(1)/(log_(c)(a)) is equal to

If (2)/(log_(b)x)=(1)/(log_(a)x)+(1)/(log_(c)x), where a,b,c,x belong to (1,oo) then

If a,b,c are in GP then 1/(log_(a)x), 1/(log_(b)x), 1/(log_( c)x) are in:

(1)/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c)

(1)/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c) has the value equal to

Prove that : (viii) (log_(a)x)/(log_(ab)x) = 1+log_(a)b .