Home
Class 12
MATHS
int(1)^(e)(log x)^(2)dx...

int_(1)^(e)(log x)^(2)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

-int_(1)^(e)((log x)^(2))/(x)*dx

int_(1)^(e)(ln x)/(x^(2))dx=

int_(1)^(e)(1+log x)/(x)dx=

"int_(1)^(e)(1+log x)/(x)dx=

int_(1)^(e) log (x) dx=

" (2) "int_(1)^(2)(log e^(x))/(x^(2))dx

int_(1)^(e )x^(x)dx+ int_(1)^(e )x^(x)log x dx=

The value of int_(1)^(e)(1+x^(2)ln x)/(x+x^(2)ln x)*dx is :

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is:

Evaluate: int_(0)^(e-1)((x^(2)+2x-1)/(2))/(x+1)dx+int_(1)^(e)x log xe^((z^(2)-2)/(2))dx