Home
Class 12
MATHS
" 14."(1)*sin^(-1)(1)/(sqrt(1+x^(2)))...

" 14."(1)*sin^(-1)(1)/(sqrt(1+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

solve : sin ^(-1) ""((x)/(sqrt(1+x^(2))))-sin ^(-1)((1)/(sqrt(1+x^(2))))= sin ^(-1) ((1+x)/(1+x^(2)))

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

solve : tan^(-1) sqrt(x(x+1))+sin ^(-1) (sqrt(1+x+x^(2)))=(pi)/(2)

If x in[(sqrt(3))/(2), 1] then [sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x]=

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to