Home
Class 14
MATHS
" If "y=(x)/(sqrt(1+x^(2)))," prove that...

" If "y=(x)/(sqrt(1+x^(2)))," prove that "x(dy)/(dx)=y^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x)/(sqrt(1+x^(2))) , prove that, x^(3)(dy)/(dx)=y^(3) .

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=x+(y)/(x)

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=x+(y)/(x)

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))