Home
Class 12
MATHS
[" For non-zero reals "a,b" and "c" ,"],...

[" For non-zero reals "a,b" and "c" ,"],[[(a^(2)+b^(2))/(c)," c "],[a,(b^(2)+c^(2))/(a)," c "],[b,bquad (c^(2)+a^(2))/(ab)]=a*" abe,then "],[" the value of "alpha" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

For a non-/cro real a,b and c |((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(c^2+a^2)/b)|=alpha abc, then the value of alpha is -

For a non-co real a,b and c |((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(c^2+a^2)/b)|=alpha abc, then the value of alpha is -

If a , b , c are all non-zero and a+b+c=0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ? .

If a,b,c are non-zero distinct real numbers and a+b+c=0, then (a^(2))/(2a^(2)+bc)+(b^(2))/(2b^(2)+ac)+(c^(2))/(2c^(2)+ab)

If a,b,c are all non-zero and a+b+c=0 prove that (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)=3

|[bc,ca,ab],[(b+c)^(2),(c+a)^(2),(a+b)^(2)],[a^(2),b^(2)c^(2)]|

If a,b,c are all non-zeros ,a+b+c=0 prove (a^(2))/(bc)+(b^(2))/(ac)+(c^(2))/(ab)=3

|((b+c)^(2),a^(2),bc),((c+a)^(2),b^(2),ca),((a+b)^(2),c^(2),ab)|=