Home
Class 12
MATHS
If (log)3(x^2-6x+11)lt=1, then the exhau...

If `(log)_3(x^2-6x+11)lt=1,` then the exhaustive range of values of `x` is: `(-oo,2)uu(4,oo)` (b) `(2,4)` `(-oo,1)uu(1,3)uu(4,oo)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log)_3(x^2-6x+11)lt=1, then the exhaustive range of values of x is: (a) (-oo,2)uu(4,oo) (b) [2,4] (c) (-oo,1)uu(1,3)uu(4,oo) (d) none of these

If (log)_3(x^2-6x+11)lt=1, then the exhaustive range of values of x is: (a) (-oo,2)uu(4,oo) (b) (2,4) (c) (-oo,1)uu(1,3)uu(4,oo) (d) none of these

If (log)_3(x^2-6x+11)lt=1, then the exhaustive range of values of x is: (a) (-oo,2)uu(4,oo) (b) (2,4) (c) (-oo,1)uu(1,3)uu(4,oo) (d) none of these

If log_(3)(x^(2)-6x+11)<=1, then the exhaustive range of values of x is: (-oo,2)uu(4,oo)(b)(2,4)(-oo,1)uu(1,3)uu(4,oo)(d) none of these

The solution set of log_(2)|4-5x|>2 is a )((8)/(5),+oo) b) ((4)/(5),(8)/(5)) c) (*oo,0)uu((8)/(5),+oo) d) none of these

If the point (1,a) lies in between the lines x+y=1 and 2(x+y)=3 then a lies in (i)(-oo,0)uu(1,oo)(ii)(0,(1)/(2))(iii)(-oo,0)uu((1)/(2),oo)(iv) none of these

For x^2-(a+3)|x|+4=0 to have real solutions, the range of a is (-oo,-7]uu[1,oo) b. (-3,oo) c. (-oo,-7) d. [1,oo)

The solution set of the inequality max {1-x^2,|x-1|}<1 is (-oo,0)uu(1,oo) (b) (-oo,0)uu(2,oo) (0,2) (d) (0,2)

If f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt , then the interval in which f(x) is increasing is (a) (-oo,2)uu(6,oo) (b) (4,6) (c) (-oo,2)uu(4,oo) (d) (2,6)

For x^(2)-(a+3)|x|+4=0 to have real solution,the range of a is (-oo,-7]uu[1,oo) b.(-3,oo) c.(-oo,-7)d*[1,oo)