Home
Class 9
MATHS
root(3)(p(p^(2)+3p+3))+1=2...

root(3)(p(p^(2)+3p+3))+1=2

Promotional Banner

Similar Questions

Explore conceptually related problems

If p=124 , root(3)(p(p^(2) + 3p +3)+1)=?

If P=999 , then root(3)(P(P^(2)+3P+3)+1)=

If P = 124, then root(3)(P(P^(2)+3P+3)+1)=?

p_(1)p_(2)p_(3)=

Find the value of 'p' for which the qudratic equations have equal roots: (3p +1) c^(2) + 2 ( p+1) c+ p=0.

Add : 2p ^(4) - 3p ^(3) + p^(2) - 5p + 7, - 3p ^(4) - 7p ^(3) - 3p ^(2) - p - 12

If each pair of the three equations x^(2) - p_(1)x + q_(1) =0, x^(2) -p_(2)c + q_(2)=0, x^(2)-p_(3)x + q_(3)=0 have common root, prove that, p_(1)^(2)+ p_(2)^(2) + p_(3)^(2) + 4(q_(1)+q_(2)+q_(3)) =2(p_(2)p_(3) + p_(3)p_(1) + p_(1)p_(2))

If p is a constant and f(x) =|(x^2,x^3,x^4),(2,3,6),(p,p^2,p^3)| if f'(x)=0 have roots alpha,beta , then (1) alpha and beta have opposite sign and equal magnitude at p= root (3) (2) At p=1 , f''(x)=0 represent an identity (3) at p=2 ,product of roots are unity (4) at p=- (root 3) product of roots are positive

If alpha,beta,gamma are the roots of x^(3)+p_(1)x^(2)+p_(2)x+p_(3)=0 Then sum of roots