Home
Class 11
MATHS
/A=pi/6andb : c=2:sqrt(3),f i n d/B...

`/_A=pi/6andb : c=2:sqrt(3),f i n d/_B`

Promotional Banner

Similar Questions

Explore conceptually related problems

In A B C ,/_A=100^0 , A D\ b i s e c t s\ /_A\ a n d\ A D_|_B Cdot f i n d /_Bdot

In a DeltaA B C , if b=sqrt(3), c=1 a n d /_A=30^0, then find a

In a DeltaA B C ,\ if\ b=sqrt(3),\ c=1\ a n d\ /_A=30^0 , then find a

Let A B C be a triangle such that /_A C B=pi/6 and let a , ba n dc denote the lengths of the side opposite to A , B ,a n dC respectively. The value(s) of x for which a=x^2+x+1,b=x^2-1,a n dc=2x+1 is(are) -(2+sqrt(3)) (b) 1+sqrt(3) 2+sqrt(3) (d) 4sqrt(3)

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is pi/6 b. pi/4 c. pi/3 d. pi/2

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is a. pi/6 b. pi/4 c. pi/3 d. pi/2

In Figure, /_A=60^0\ a n d\ /_A B C=80^0, find /_D P C\ a n d\ /_B Q C

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , , | vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angle between vec a and vec b is pi/6 b. pi/4 c. pi/3 d. pi/2

The function y=f(x) is the solution of the differential equation [dy]/[dx]+[xy]/[x^2-1]=[x^4+2x]/sqrt[1-x^2] in (-1, 1), satisfying f(0)=0. Then int_[-sqrt3/2]^[sqrt3/2] f(x)dx is (A) pi/3 - sqrt3/2 (B) pi/3 - sqrt3/4 (C) pi/6 - sqrt3/4 (D) pi/6 - sqrt3/2