Home
Class 12
MATHS
[" Let "F(x)=x^(3)+ax^(2)+bx+5sin^(2)x" ...

[" Let "F(x)=x^(3)+ax^(2)+bx+5sin^(2)x" be an increasing function in "],[" the set of real number "R" .Then a and "b" satisfy the "],[" condition."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(3)+ax^(2)+bx+5 sin^(2)x be an increasing function on the set R. Then,

If f(x) =x^(3) +ax^(2)+bx +5 sin^(2) x is an increasing function on R, then

Leg f(x)=x^(3)+ax^(2)+bx+5sin^(2)x be an increasing function on the set R. Then find the condition on a and b.

Let f (x) = x ^(3) + ax ^(2) + bx + 5 sin ^2 theta + c be can increasing function of x (theta is a parameter), Then, a and b satisfy the condition:

If f(x)=x^3+a x^2+b x+5sin^2x\ is a strictly increasing function on the set of real numbers then a and b must satisfy the relation:

Let f(x)=x^(3)+kx^(2)+5x+4sin^(2)x be an increasing function on x in R. Then domain of k is

IF f(x)=x^(3)+ax^(2)+bx+5sin^(2)x is a strictly increasing function on the set of real numbers then a and b must satisfy the relation a^(2)-3b+15<=0 (b) a^(2)-3b+20<=0a^(2)-3b+25<=0 (d) a^(2)-3b+30<=0

If f(x)=x^(3)+ax^(2)+bx+5sin^(2)x, AA x in R is an increasing function, then …………..