Home
Class 12
MATHS
Simplify tan^(-1)((sinx)/(1+cos x))...

Simplify
`tan^(-1)((sinx)/(1+cos x))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \tan^{-1}\left(\frac{\sin x}{1 + \cos x}\right) \), we can follow these steps: ### Step 1: Rewrite sine and cosine in terms of tangent We know the following identities for sine and cosine in terms of tangent: \[ \sin x = \frac{2 \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] ### Step 2: Substitute sine and cosine into the expression Now, substituting these identities into the expression: \[ \tan^{-1}\left(\frac{\sin x}{1 + \cos x}\right) = \tan^{-1}\left(\frac{\frac{2 \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}}{1 + \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}}\right) \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ 1 + \cos x = 1 + \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} = \frac{(1 + \tan^2\left(\frac{x}{2}\right)) + (1 - \tan^2\left(\frac{x}{2}\right))}{1 + \tan^2\left(\frac{x}{2}\right)} = \frac{2}{1 + \tan^2\left(\frac{x}{2}\right)} \] ### Step 4: Substitute back into the expression Now substituting this back into our expression: \[ \tan^{-1}\left(\frac{2 \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \cdot \frac{1 + \tan^2\left(\frac{x}{2}\right)}{2}\right) \] ### Step 5: Cancel out terms The \(1 + \tan^2\left(\frac{x}{2}\right)\) cancels out: \[ \tan^{-1}\left(\frac{2 \tan\left(\frac{x}{2}\right)}{2}\right) = \tan^{-1}\left(\tan\left(\frac{x}{2}\right)\right) \] ### Step 6: Apply the inverse tangent identity Using the identity \( \tan^{-1}(\tan \theta) = \theta \): \[ \tan^{-1}\left(\tan\left(\frac{x}{2}\right)\right) = \frac{x}{2} \] ### Final Answer Thus, the simplified expression is: \[ \frac{x}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((1+sinx)/cosx)=

tan^(-1)((cos x)/(1+sin x))

tan^(-1)((cos x)/(1-sin x))

tan^(-1)((cosx+sinx)/(cos x-sinx))

Simplify tan^(-1)(cos x/(1+sin x))

tan^(-1)((1-cos x)/(sin x))

The derivative of tan^(-1)[(sin x)/(1+ cosx)] with respect to tan^(-1)[(cosx)/(1+sinx)] is

Derivative fo tan^(-1)((sinx)/(1+cosx))w.r.t.tan^(-1)((cosx)/(1+sinx)) is

Simplify tan^(-1)(sqrt((1-sin x)/(1+sin x))), 0lt x ltpi