Home
Class 12
MATHS
Simplify cot^(-1)((1)/(sqrt(x^(2)-1)))...

Simplify
`cot^(-1)((1)/(sqrt(x^(2)-1))), x lt -1 `

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \cot^{-1}\left(\frac{1}{\sqrt{x^2 - 1}}\right) \) given that \( x < -1 \), we can follow these steps: ### Step 1: Rewrite \( x \) in terms of \( \sec \theta \) Since \( x < -1 \), we can let \( x = \sec \theta \) where \( \theta \) is in the range \( \left(\frac{\pi}{2}, \pi\right) \). ### Step 2: Substitute \( x \) into the expression Substituting \( x = \sec \theta \) into the expression gives: \[ \cot^{-1}\left(\frac{1}{\sqrt{\sec^2 \theta - 1}}\right) \] ### Step 3: Simplify the expression under the square root Using the identity \( \sec^2 \theta - 1 = \tan^2 \theta \), we can rewrite the expression as: \[ \cot^{-1}\left(\frac{1}{\sqrt{\tan^2 \theta}}\right) \] ### Step 4: Simplify further Since \( \sqrt{\tan^2 \theta} = |\tan \theta| \) and \( \tan \theta \) is negative in the interval \( \left(\frac{\pi}{2}, \pi\right) \), we have: \[ \sqrt{\tan^2 \theta} = -\tan \theta \] Thus, the expression becomes: \[ \cot^{-1}\left(\frac{1}{-\tan \theta}\right) = \cot^{-1}\left(-\cot \theta\right) \] ### Step 5: Use the property of inverse cotangent Using the property \( \cot^{-1}(-x) = \pi - \cot^{-1}(x) \), we can rewrite the expression as: \[ \pi - \cot^{-1}(\cot \theta) \] ### Step 6: Simplify \( \cot^{-1}(\cot \theta) \) Since \( \cot^{-1}(\cot \theta) = \theta \) (for \( \theta \) in the appropriate range), we have: \[ \pi - \theta \] ### Step 7: Substitute back for \( \theta \) Recall that \( \theta = \sec^{-1}(x) \), so we substitute back to get: \[ \pi - \sec^{-1}(x) \] ### Final Answer Thus, the simplified expression is: \[ \pi - \sec^{-1}(x) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)((sqrt(1-x^(2)))/(x))

Simplify tan^(-1)((sqrt(1+x^2)-1)/x)

cot^(-1)(sqrt(1+x^2)-x)

cot^(-1)sqrt(x)

Simplify (x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))+(x-sqrt(x^(2)-1))/(x+sqrt(x^(2)-1))

Evaluate cot^(-1)(sqrt(1+x^(2))+x)

Simplify tan^(-1)(sqrt((1-sin x)/(1+sin x))), 0lt x ltpi

Simplify sin cot^(-1)tan cos^(-1)x,x>0