Home
Class 12
MATHS
Solve the following L.P.P graphically ...

Solve the following L.P.P graphically
Minimise and maximise z = 3x + 9y
Subject to the constraints `x + 3y le 60`
`x + y ge 10`
`x le y`
`x ge 0, y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given Linear Programming Problem (LPP) graphically, we will follow these steps: ### Step 1: Formulate the Objective Function and Constraints We need to minimize and maximize the objective function: \[ z = 3x + 9y \] Subject to the constraints: 1. \( x + 3y \leq 60 \) 2. \( x + y \geq 10 \) 3. \( x \leq y \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To graph the constraints, we convert the inequalities into equations: 1. \( x + 3y = 60 \) 2. \( x + y = 10 \) 3. \( x = y \) ### Step 3: Plot the Lines on the Graph We will plot each line on the XY-plane. 1. **For \( x + 3y = 60 \)**: - When \( x = 0 \): \( 3y = 60 \) → \( y = 20 \) (Point: \( (0, 20) \)) - When \( y = 0 \): \( x = 60 \) (Point: \( (60, 0) \)) - Plot the line through points \( (0, 20) \) and \( (60, 0) \). 2. **For \( x + y = 10 \)**: - When \( x = 0 \): \( y = 10 \) (Point: \( (0, 10) \)) - When \( y = 0 \): \( x = 10 \) (Point: \( (10, 0) \)) - Plot the line through points \( (0, 10) \) and \( (10, 0) \). 3. **For \( x = y \)**: - This is a diagonal line through the origin at a 45-degree angle. ### Step 4: Determine the Feasible Region To find the feasible region, we need to test points in relation to the inequalities: - For \( x + 3y \leq 60 \): Test point \( (0, 0) \) → \( 0 + 3(0) = 0 \leq 60 \) (satisfied). - For \( x + y \geq 10 \): Test point \( (0, 0) \) → \( 0 + 0 = 0 < 10 \) (not satisfied, so the region is above this line). - For \( x \leq y \): Test point \( (1, 0) \) → \( 1 \not\leq 0 \) (not satisfied, so the region is above the line \( x = y \)). The feasible region is bounded by the lines and lies in the first quadrant. ### Step 5: Identify Corner Points of the Feasible Region The corner points of the feasible region can be found by solving the intersections of the lines: 1. **Intersection of \( x + 3y = 60 \) and \( x = y \)**: \[ x + 3x = 60 \implies 4x = 60 \implies x = 15 \implies y = 15 \quad \text{(Point B: \( (15, 15) \))} \] 2. **Intersection of \( x + y = 10 \) and \( x = y \)**: \[ x + x = 10 \implies 2x = 10 \implies x = 5 \implies y = 5 \quad \text{(Point C: \( (5, 5) \))} \] 3. **Intersection of \( x + 3y = 60 \) and \( x + y = 10 \)**: \[ x + 3(10 - x) = 60 \implies x + 30 - 3x = 60 \implies -2x = 30 \implies x = -15 \quad \text{(not in the feasible region)} \] 4. **Intersection of \( x + 3y = 60 \) and \( y = 0 \)**: \[ x + 3(0) = 60 \implies x = 60 \quad \text{(Point D: \( (60, 0) \))} \] 5. **Intersection of \( x + y = 10 \) and \( y = 0 \)**: \[ x + 0 = 10 \implies x = 10 \quad \text{(Point A: \( (10, 0) \))} \] ### Step 6: Evaluate the Objective Function at Each Corner Point Now we evaluate \( z = 3x + 9y \) at each corner point: - Point A \( (10, 0) \): \( z = 3(10) + 9(0) = 30 \) - Point B \( (15, 15) \): \( z = 3(15) + 9(15) = 180 \) - Point C \( (5, 5) \): \( z = 3(5) + 9(5) = 60 \) - Point D \( (60, 0) \): \( z = 3(60) + 9(0) = 180 \) ### Step 7: Identify Maximum and Minimum Values - **Minimum value of \( z \)**: \( 30 \) at point \( (10, 0) \) - **Maximum value of \( z \)**: \( 180 \) at points \( (15, 15) \) and \( (60, 0) \) ### Conclusion - **Minimum**: \( z = 30 \) at \( (10, 0) \) - **Maximum**: \( z = 180 \) at \( (15, 15) \) and \( (60, 0) \)
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos

Similar Questions

Explore conceptually related problems

Solve the following problem graphically: Minimise and Maximise z = 2x + 6y Subject to the constraints: x + 2y le 10 , x + y le 7 , xge 2 , x ge 0 , y ge 0

Solve the following problem graphically Minimise and Maximise , z=3x+9y Subject to the constraints x+3y =10,x =0,y>=0

Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

Maximum Z = 3x + 5y subject to the constraints : x + 2y ge 10, x + y ge 6, 3x + y ge 8, x ge 0, y ge 0 .

Maximise and Minimise : Z = 4x + 3y -7 subject to the constraints: x + y le 10, x + y ge 3, x le 8, y le 9, x, y ge 0

3x + 4y le 60, x ge 2y , x ge1 , y ge 0

Solve the following LPP graphically: Maximise : Z = 4x + y Subject to following constraints: x + y le 50 3x + y le 90 x ge 10 and y ge 0 .

Maximise Z=3x+4y, Subjected to the constraints x+y le1, x ge 0, y ge 0

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0