Home
Class 11
MATHS
" If "f(x)=[x]+[x+(1)/(3)]+[x+(2)/(3)]...

" If "f(x)=[x]+[x+(1)/(3)]+[x+(2)/(3)]

Promotional Banner

Similar Questions

Explore conceptually related problems

The fundamental period of function f(x) = [x] + [x + (1)/(3)] + [x + (2)/(3)] - 3x + 15

The fundamental period of the function f(x)=[x]+[x+(1)/(3)]+[x+(2)/(3)]-3x+sin3 pi x-1 is :-

If [.] denotes the greatest integer function then the number of points where f(x)=[x]+[x+(1)/(3)]+[x+(2)/(3)] is Discontinuous for x in(0,3) are

period of f(x)={x}+{x+(1)/(3)}+{x+(2)/(3)} is equal to

Period of f(x)=[x]+[x+1/3]+[x+2/3]-3x+10, where [.] denotes the greatest integer function.

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals