Home
Class 12
MATHS
lim(x->1^+)intx^4(sqrt(t)+3)/(sqrt(t-1))...

`lim_(x->1^+)int_x^4(sqrt(t)+3)/(sqrt(t-1))dt`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(dt)/( sqrt(t-1))

int(1)/(sqrt(t))dt

int(1)/(sqrt(t)+1)dt

int(4+sqrt(t))/(t^(3))dt

Given that lim_(x to 0)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

Given that lim_(x to oo)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

int(dt)/( sqrt(1-t)-t)

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is