Home
Class 12
MATHS
bar(OA)=6bar(i)+3bar(j)-4bar(k),bar(OB)=...

`bar(OA)=6bar(i)+3bar(j)-4bar(k),bar(OB)=2bar(j)+bar(k),bar(OC)=5bar(i)-bar(j)+2bar(k)` are coterminous edges of a parallelepiped,then the height of the parallelepiped drawn from the vertex A is

Promotional Banner

Similar Questions

Explore conceptually related problems

bar(b)=bar(i)-2bar(j)-3bar(k),bar(b)=2bar(i)+bar(j)-bar(k),bar(c)=bar(i)+ 3bar(j)-2bar(k) then bar(a).(bar(b)xxbar(c))

bar(a)=2bar(i)+3bar(j)-4bar(k),bar(b)=bar(i)+bar(j)+bar(k),bar(c)=4bar(i)+2bar(j)+3bar(k) then |bar(a)xx(bar(b)xxbar(c))|=

bar(a)=2bar(i)+bar(i)+bar(k),bar(b)=bar(i)+2bar(j)+2bar(k),bar(c)=bar(i)+bar(j)+2bar(k) and bar(a)xx(bar(b)xxbar(c))=

The vectors bar(i)+4bar(j)+6bar(k),2bar(i)+4bar(j)+3bar(k) and bar(i)+2bar(j)+3bar(k) form

Given bar(a)=bar(i)+2bar(j)+3bar(k),bar(b)=2bar(i)+3bar(j)+bar(k),bar(c)=8bar(i)+13bar(j)+9bar(k) , the linear relation among them if possible is

If bar(a)=2bar(i)-bar(j)-bar(k),bar(b)=bar(i)+2bar(j)-3bar(k) and bar(c)=3mp mubar(j)+5bar(k) are coplanar then mu root of the equation

bar(a)=bar(i)+bar(j)+bar(k),bar(b)=4bar(i)+3bar(j)+4bar(k),bar(c)=bar(i)+alphabar(j)+betabar(k) are linearly dependent vectors and |bar(c)|=sqrt(3) then

If 2bar(i)+3bar(j)-6bar(k) , 6bar(i)-2bar(j)+3bar(k) are two consecutive sides of a triangle, then perimeter of triangle is

If p=bar(i)+abar(j)+bar(k) and q-bar(i)+bar(j)+bar(k) then |bar(p)+bar(q)|=|bar(p)|+|bar(q)| is true for

If p=bar(i)+abar(j)+bar(k) and q=bar(i)+bar(j)+bar(k) then |bar(p)+bar(q)|=|bar(p)|+|bar(q)| is true for