Home
Class 11
MATHS
If (A)/(2) and A are not an odd multipl...

If `(A)/(2)` and A are not an odd multiple of `(pi)/(2)` then `tan A=`
`(2tan A)/(1-tan^(2)A)`
`(2tan A)/(1+tan^(2)A)`
`(2tan (A/2))/(1-tan^(2)(A/2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

A/2 is not an odd multiple of (pi)/(2) ,then tan(A/2)=

((1+tan^(2)A)/(1+cot^(2)A))=((1-tan A)/(1-cot A))^(2)=tan^(2)A

(tan A)/(2)(tan B)/(2)+(tan B)/(2)(tan C)/(2)+(tan C)/(2)(tan A)/(2) =1

(tan4A+tan2A)(1-tan^(2)3A tan^(2)A)=2tan3A sec^(2)A

(1-tan^2(pi/4))/(1+tan^2(pi/4))=?

Prove that (1+tan^(2)A)/(1+cot^(2)A)=((1-tan A)/(1-cot A))^(2)=tan^(2)A

Prove that: tan(A+B)tan(A-B)=(tan^(2)A-tan^(2)B)/(1-tan^(2)A tan^(2)B)

Prove that: (tan(A+B))/(cot(A-B))=(tan^(2)A-tan^(2)B)/(1-tan^(2)A tan^(2)B)

Show that : ((1+tan^(2)A)/(1+cot^(2)A))=((1-tan A)/(1-cot A))^(2)=tan^(2)A

(1+tan A)^(2)+(1-tan A)^(2)=2sec^(2)A