Home
Class 12
MATHS
The solution of 2^x + 2^(|x|) >= 2 sq...

The solution of `2^x + 2^(|x|) >= 2 sqrt(2)` is (i) `(-infty,log_2(sqrt2+1))` (ii)`(0,1)` (iii) `(1/2,log_2(sqrt2-1))` (iv) `(-infty,log_2(sqrt2+1)) cup [1/2,infty)`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_((sqrt(2)+1))(sqrt(2)-1)=

log((sqrt2-1)/(sqrt2+1))

The solution set of the inequation (1)/(log_(2)x) lt (1)/(log_(2)sqrt(x+2)) , is

The solution set of the inequation (1)/(log_(2)x) lt (1)/(log_(2)sqrt(x+2)) , is

Solve log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1) .

Solve log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1) .

Solve log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1) .

Solve log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1) .

2log_(2)(log_(2)x)+log_((1)/(5))(log_(2)2sqrt(2x))=1