Home
Class 12
MATHS
Let f(x) = 1 /(sqrt( 18 - x^2) The valu...

Let `f(x) = 1 /(sqrt( 18 - x^2)` The value of `Lt_(x -> 3) (f(x)-f(3)) / (x-3)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(1)/(sqrt(18-x^(2))) The value of Lt_(x rarr3)(f(x)-f(3))/(x-3) is

Let f(x)=(1)/(sqrt(18-x^(2))) What is the value of lim_(xto3) (\f(x)-f(3))/(x-3) ?

If f'(3)=8 then the value of Lt(x → 0)(f(3+x)-f(3-x))/(2x)=

Let f(x)= (sqrt(x+3))/(x+1) , then the value of lim_(x rarr -3^-) f(x) is :

let f(x)=x^(2)-3x+4 the values of x which satisfies f(1)+f(x)=f(1)*f(x) is

If f(x)=x^(3)-5x^(2)+5x+1 then value of f(2-sqrt(3)) is