Home
Class 12
MATHS
f(x)={(|x^2-1|)/(x-1),\ \ \ for\ x!=1 2,...

`f(x)={(|x^2-1|)/(x-1),\ \ \ for\ x!=1 2,\ \ \ for\ x=1` at `x=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(2x^(2)-7x+5) for x!=1 and f(x)=-(1)/(3) for x=1 then f'(1)=

Let f(x) be a function defined as f(x)={(x^2-1)/(x^2-2|x-1|-1),x!=1 {1/2,x=1 Discuss the continuity of the function at x=1.

Let f(x) be a function defined as f(x)={(x^2-1)/(x^2-2|x-1|-1),x!=1 1/2,x=1 Discuss the continuity of the function at x=1.

Let f(x) be a function defined as f(x)={(x^2-1)/(x^2-2|x-1|-1),x!=1 {1/2,x=1 Discuss the continuity of the function at x=1.

Let f(x) be a function defined as f(x)={(x^2-1)/(x^2-2|x-1|-1),x!=1 1/2,x=1 Discuss the continuity of the function at x=1.

f(x)={(1-x, x le1/2),(x,x gt 1/2):} at x=1/2

If f(x) is continuous at x=1 , where f(x)=((x+3x^(2)+5x^(3)+...+(2n-1)x^(n)-n^(2))/(x-1)) , for x !=1 , then f(1)=

If f(x) = {:{((x -1)/(2x^(2) - 7 x +5) , " for " x ne 1) , (-1/3 , " for " x = 1):} then f' (1) is equal to

If f(x) = {:{((x -1)/(2x^(2) - 7 x +5) , " for " x ne 1) , (-1/3 , " for " x = 1):} then f (1) is equal to