Home
Class 11
MATHS
I(n)=int(100x)^(n)dx,I(6)+6I(5)=...

I_(n)=int(100x)^(n)dx,I_(6)+6I_(5)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int x^(n)e^(x)dx, then I_(5)+5I_(4)=

If I_(n)=int x^(n)e^(x)dx, then I_(5)+5I_(4)=

LetI_(1)=int_(0)^(n)[x]dx and I_(2)=int_(0)^(n){x}dx where [x] and {x} are integral and fractionalparts of x and n in N-{1}. Then (I_(1))/(I_(2)) is equal to

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_(n)=int(ln x)^(n)dx then I_(n)+nI_(n-1)

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

If I_(n)=int(sinnx)/(sinx)dx, then I_(5)-I_(3)=

If n in N and I_(n) = int(log x)^(n) dx , then I_(n)+nI_(n-1) =

Let I_(n)=int tan^(n)xdx,(n>1). If I_(4)+I_(6)=a tan^(5)x+bx^(5)+C, where C is a constant of integration,then the ordered pair (a,b) is equal to :

If n in N and I_(n) = int (log x)^(n) dx , then I_(n) + n I_(n - 1) =