Home
Class 12
MATHS
Find the vector and Cartesian equations ...

Find the vector and Cartesian equations of the plane containing the two lines ` vec r=2 hat i+ hat j-3 hat k+lambda( hat i+2 hat j+5 hat k)a n d , vec r=3 hat i+3 hat j+2 hat k+mu(3 hat i-2 hat j+5 hat k)`

Text Solution

Verified by Experts

Normal vector of plane would be perpendicular to
both the lines say `l_1​ & l_2`​
=> parallel to `l_1​​×l_2`​ ​
So,`l_1​×l_2`​
`​ =∣[i,j,k],[1,2,5],[3,-2,5]|`
`=20i+10j​−6k `
...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TANGENTS AND NORMALS

    RD SHARMA|Exercise Solved Examples And Exercises|244 Videos
  • TRIGONOMETRIC IDENTITIES

    RD SHARMA|Exercise EXAMPLE|1 Videos

Similar Questions

Explore conceptually related problems

Find the vector and cartesian equation of a plane containing the two lines vec r=(2hat i+hat j-3hat k)+lambda(hat i+2hat j+5hat k) and vec r=(3hat i+3hat j+2hat k)+mu(3hat i-2hat j+5hat k) Also,show that the line vec r=(2hat i+5hat j+2hat k)+P(3hat i-2hat j+5hat k) lies in the plane.

vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

The vector equation of the plane containing the line vec r=(-2 hat i-3 hat j+4 hat k)+lambda(3 hat i-2 hat j- hat k) and the point hat i+2 hat j+3 hat k is a. vec rdot(( hat i+3 hat k)=10 b. vec rdot(( hat i-3 hat k)=10 c. vec rdot((3 hat i+ hat k)=10 d. none of these

Find the vector and cartesian forms of the equation of the plane containing two lines : vec(r)= (i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k)) and vec(r) = 3 hat(j) - 5 hat(k) + mu ( - 2 hat(i) + 3 hat(j) + 8 hat(k)) .

Equation of the plane containing the lines vec r=(hat i-2hat j+hat k)+t(hat i+2hat j-hat k)vec r=(hat i+2hat j-hat k)+s(hat i+hat j+3hat k) is

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and ,vec r,=2hat i-hat j-hat k+mu(2hat i+hat j+2hat k)

Find the shortest distance between the lines vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and vec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)

Shortest distance between the lines: vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+u(2hat i+4hat j-5hat k)

Find the angle between the line vec r=(2hat i-hat j+3hat k)+lambda(3hat i-hat j+2hat k) and the plane vec r*(hat i+hat j+hat k)=3