Home
Class 11
MATHS
lim(n rarr oo)(1^(3))/(n^(4)+1^(4))+(2^(...

lim_(n rarr oo)(1^(3))/(n^(4)+1^(4))+(2^(3))/(n^(4)+2^(4))+......+(1)/(2n)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(n rarr oo)[(1^(3))/(n^(4)+1^(4))+(2^(3))/(n^(4) + 2^(4))+....+(n^(3))/(n^(4)+n^(4))]

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))

lim_(n rarr oo)(((n+1)^(1/3))/(n^(4/3))+((n+2)^(1/3))/(n^(4/3))+.....+((2n)^(1/3))/(n^(4/3))) is equal to

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)((n+1)^(4)-(n-1)^(4))/((n+1)^(4)+(n-1)^(4))

lm_ (n rarr oo) ((1 ^ (3)) / (n ^ (4)) + (2 ^ (4)) / (n ^ (4)) + (3 ^ (3)) / (n ^ (4)) + ...... + (n ^ (3)) / (n ^ (4)))