Home
Class 12
MATHS
A function y=f(x) satisfying f'(x)=x^(-3...

A function `y=f(x)` satisfying `f'(x)=x^(-3/2), f'(4)=2` and `f(0)=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a function satisfying f''(x)=x^(-(3)/(2)) , f'(4)=2 and f(0)=0 . Then f(784) equals……..

Let f be a function satisfying f''(x)=x^(-(3)/(2)) , f'(4)=2 and f(0)=0 . Then f(784) equals……..

Let the function f satisfies f(2x)*f'(-2x)=f(-2x)f'(2x) and f(0)=4 ,then int_(-24)^(24)(dx)/(4+f(2x))dx is

A function f(x) satisfies f(x+y)=f(x)+y and f(0)=5 Then f(2017) is equal to (1)2017(2)2019(3)2022(4)2025

Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be the function satisfying f(x)+g(x)=x^(2) .Prove that, int_(0)^(1)f(x)g(x)dx=(1)/(2)(2e-e^(2)-3)

A polynomial function f(x) satisfies f(x)f((1)/(x))-2f(x)+2f((1)/(x));x!=0 and f(2)=18 ,then f(3) is equal to

A function y=f(x) satisfies (x+1)f^(')(x)-2(x^(2)+x)f(x) = e^(x^(2))/(x+1), Aax gt -1 . If f(0)=5 , then f(x) is

If f(x) is a differentiable function satisfying |f'(x)| le 2 AA x in [0, 4] and f(0)=0 , then

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is