Home
Class 7
MATHS
sin p*lif y:a(b-c)+b(c-a)+c(a-b)...

sin p*lif y:a(b-c)+b(c-a)+c(a-b)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b,c be the sides foi a triangle ABC and if roots of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal then sin^2 A/2, sin^2, B/2, sin^2 C/2 are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If a,b,c are in H.P., then (a)/(b+c),(b)/(c+a),(c)/(a+b) will be in

If a+b+c=0 and p!=0, the lines ax+(b+c)y=p,bx+(c+a)y=p and cx(a+b)y=p

Let P(x) equiv ((x-a)(x-b))/((c-a)(c-b)).c^2+((x-b)(x-c))/((a-b)(a-c)).a^2+((x-c)(x-a))/((b-c)(b-a)).b^2 Prove that P(x) has the properly that P(y) = y^2 for all y in R.

If (b+c),(c+a),(a+b) are in H. P.then prove that (a)/(b+c),(b)/(c+a),(c)/(a+b) are in A.P

If a,b,c are in H.P then prove that a/(b+c-a),b/(c+a-b),c/(a+b-c) are in H.P

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B

In a triangle ABC, if a,b,c are in A.P and (b)/(c)sin2C+(c)/(b)sin2B+(b)/(a)sin2A+(a)/(b)sin2B=2 then the value of sin B equals

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B