Home
Class 12
MATHS
f:R rarr[-1,oo]" and "f(x)=ln([|sin2x|+|...

f:R rarr[-1,oo]" and "f(x)=ln([|sin2x|+|cos2x|])" where [] is the G.I.F "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr[-1,oo] and f(x)=ln([sin2x|+|cos2x|]) (where[.] is greatest integer function),then- -

Let f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|]) (where[.] is greatest integer function), then -

Let f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|]) (where[.] is greatest integer function), then -

The domain of f(x)=sin^(-1)[2-4x^(2)] (where [.] is G.I.F) is

The function f:R rarr B is defined by f(x)=[x]+[-x] where [.] is G.I.F. is surjective then B is

f(x)=sqrt([sin2x]-[cos2x]) :[.]GIF, then range of f(x)

If f : R rarr R , f(x) = sin^(2) x + cos^(2) x , then f is

If f : R rarr R , f(x) = sin^(2) x + cos^(2) x , then f is