Home
Class 11
MATHS
The greatest positive argument of comple...

The greatest positive argument of complex number satisfying `|z-4|=R e(z)` is `pi/3` b. `(2pi)/3` c.`pi/2` d. `pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest positive argument of complex number satisfying |z-4|=R e(z) is A. pi/3 B. (2pi)/3 C. pi/2 D. pi/4

The greatest positive argument of complex number satisfying |z-4|=R e(z) is A. pi/3 B. (2pi)/3 C. pi/2 D. pi/4

The greatest positive argument of complex number satisfying |z-4|=R e(z) is A. pi/3 B. (2pi)/3 C. pi/2 D. pi/4

The greatest positive argument of complex number satisfying |z-4|=Re(z) is (pi)/(3) b.(2 pi)/(3) c.(pi)/(2) d.(pi)/(4)

The argument of the complex number (i/2-2/i) is equal to (a) pi/2 (b) pi/4 (c) pi/12 (d) (3pi)/4

The argument of the complex number z=1 + i tan ""(3pi)/(5) is-

The complex number z satisfying |z+1|=|z-1| and arg (z-1)/(z+1)=pi/4 , is

Find the complex number z if arg (z+1)=(pi)/(6) and arg(z-1)=(2 pi)/(3)

If Z=cos phi+isin phi(AA phi in ((pi)/(3),pi)) , then the value of arg(Z^(2)-Z) is equal to (where, arg(Z) represents the argument of the complex number Z lying in the interval (-pi, pi] and i^(2)=-1 )

If Z=cos phi+isin phi(AA phi in ((pi)/(3),pi)) , then the value of arg(Z^(2)-Z) is equal to (where, arg(Z) represents the argument of the complex number Z lying in the interval (-pi, pi] and i^(2)=-1 )