Home
Class 12
MATHS
If u = e^(ax) sin bx and v = e^(ax)cos b...

If `u = e^(ax) sin bx and v = e^(ax)cos bx`, then what is

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=e^(ax)sinbx and v=e^(ax)cosbx . then what is u(du)/(dx)+v(dv)/(dx) equal to ?

e^(ax).sin^-1bx

e^(ax).sin^-1bx

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=

Method of integration by parts : If u=inte^(ax)cos bx dx and v= int e^(ax) sin bx dx then (a^(2)+b^(2))(u^(2)+v^(2))=....

y=e^(ax)sin bx : Find y_1 .

If u=inte^(ax)sin " bx dx" and v=int(e^(ax))cos " bx dx" ,then tan^(-1)((u)/(v))+tan^(-1)((b)/(a)) equals