Home
Class 11
MATHS
If A,B,C denote the angles of a triangl...

If A,B,C denote the angles of a triangle ABC then prove that the triangle is right angled if and only in `sin4A+sin4B+sin4C=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In /_\ABC if sin2A+sin2B = sin2C then prove that the triangle is a right angled triangle

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

If A,B,C be the angles ofa triangle then prove that (sin A + sin B)(sin B + sin C)(sinC + sinA) gt sin A sin B sinC .

If A, B, C are the angles of a triangle, prove that sin2A+sin2B+sin2C=4sinAsinBsinC

In a triangle ABC,sin A-cos B=cos C then angle B is

In /_\ABC , if sin^2A+sin^2B = sin^2C , then, show that the triangle is a right angled triangle

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C