Home
Class 12
MATHS
Given three vectors vec a , vec b ,a n ...

Given three vectors ` vec a , vec b ,a n d vec c` two of which are non-collinear. Further if `( vec a+ vec b)` is collinear with ` vec c ,( vec b+ vec c)` is collinear with ` vec a ,| vec a|=| vec b|=| vec c|=sqrt(2)dot` Find the value of ` vec adot vec b+ vec bdot vec c+ vec cdot vec adot` `3` b. `-3` c. `0` d. cannot be evaluated

Promotional Banner

Similar Questions

Explore conceptually related problems

Given three vectors vec a , vec b ,a n d vec c two of which are non-collinear. Further if ( vec a+ vec b) is collinear with vec c ,( vec b+ vec c) is collinear with vec a ,| vec a|=| vec b|=| vec c|=sqrt(2)dot Find the value of vec a. vec b+ vec b. vec c+ vec c. vec a a. 3 b. -3 c. 0 d. cannot be evaluated

Given three vectors vec a , vec b ,a n d vec c two of which are non-collinear. Further if ( vec a+ vec b) is collinear with vec c ,( vec b+ vec c) is collinear with vec a ,| vec a|=| vec b|=| vec c|=sqrt(2)dot Find the value of vec a . vec b+ vec b . vec c+ vec c . vec a a. 3 b. -3 c. 0 d. cannot be evaluated

Given three vectors vec a , vec b ,a n d vec c two of which are non-collinear. Further if ( vec a+ vec b) is collinear with vec c ,( vec b+ vec c) is collinear with vec a ,| vec a|=| vec b|=| vec c|=sqrt(2)dot Find the value of vec a. vec b+ vec b. vec c+ vec c. vec a a. 3 b. -3 c. 0 d. cannot be evaluated

Given three vectors vec a,vec b, and vec c two of which are non-collinear.Further if (vec a+vec b) is collinear with vec c,(vec b+vec c) is collinear with vec a,|vec a|=|vec b|=|vec c|=sqrt(2). Find the value of vec a.vec b+vec b.vec c+vec c.vec a.3 b.-3 c.0 d.cannot be evaluated

If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec b+ vec c=0, then find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

vec a,vec b and vec c are three non-zero vectors,no two of which are collinear and the vectors vec a+vec b is collinear with vec b,vec b+vec c is collinear with vec a, then vec a+vec b+vec c=

If vec a,vec b,vec c are three non- null vectors such that any two of them are non-collinear.If vec a+vec b is collinear with vec c and vec b+vec c is collinear with vec a, then find vec a+vec b+vec c

If vec a , vec b, vec c are three non- null vectors such that any two of them are non-collinear. If vec a+ vec b is collinear with vec ca n d vec b+ vec c is collinear with vec a , then find vec a+ vec b+ vecc

If vec a , vec ba n d vec c are three non-zero vectors, no two of which ar collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c|dot